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Abstract

We propose to impute missing components in panels or entire waves in time
series of cross sections. An “optimal matching” procedure is proposed to infer
would-be multiple observations, accounting for unobserved heterogeneity. Match-
ing is done by “aggregation” and extrapolation over any desired group of observed
covariates. Our aggregation is information efficient and is applicable both with
observed outcomes (such as in propensity score matching), or without. This in-
cludes a substantive generalization of “cohort” methods and restores the conti-
nuity of unobserved heterogeneity across time. This feature mitigates the major
limitation of pseudo panel data that lack individual histories. Our synthetic pan-
els are examined by simulation and in two empirical studies, on the private return
to R&D in the presence of spillovers using macropanel data and female labor force
participation using micropanel data (PSID) where we know the entire panel.

Keywords: Inductive Inference, Unobserved Heterogeneity, Pseudo Panels, Infor-
mation Aggregation.
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1 Introduction

Panel data allow for control of unobserved heterogeneity and facilitate identification

and estimation of structural parameters in presence of fixed effects and unobserved

heterogeneity. See Chamberlain (1984), Arellano and Honoré (2001), Arellano (2003),

Baltagi (2008), Wooldridge (2010), Arellano and Bonhomme (2011), Hsiao (2014),

Arellano and Bonhomme (2017).

“Micropanels” provide longitudinal observations of the same households or firms

from surveys, census, administrative records, or company balance accounts. Typi-

cally, micropanels consist of large number of individuals for short time periods. Short

time micropanels are inadequate for longer life-cycle dynamic analyses. Furthermore,

attrition can dramatically shrink the cross sectional dimension. Less expensive long

*This version: June 14, 2019
†Department of Economics, Emory University. Email: zhongjian.lin@emory.edu.
‡Department of Economics, Emory University. Email: esfandiar.maasoumi@emory.edu.

1



Pseudo Panels

time series of cross sections, such as the CPS, can mitigate the short period and the

attrition issues of panel data, but lack the desired repeated observations benefits of

real panels.

In this paper we explore a new approach to creating panels from pseudo panels.

A special situation that is similar in motivation, and subsumed by our general non-

determinsitic methods, is the cohort analysis. In an influential paper, Deaton (1985)

proposed a “cohort” method for estimating structural parameters based on Family

Expenditure Surveys (FES). Also, Browning, Deaton, and Irish (1985) used the cohort

analysis to study life-cycle consumption and labor supply using the same time se-

ries of cross section source. Membership in a cohort, is defined deterministically by

one characteristic (such as age) in these studies. This presumes a great deal of ho-

mogeneity in all other characteristics and dimensions, observed and otherwise. We

should add, the cohort approach in studies of life-cycle consumption, saving and la-

bor supply, is profligate, Attanasio and Weber (1993), Blundell, Browning, and Meghir

(1994), Attanasio and Weber (1995), Attanasio (1998), Blundell, Duncan, and Meghir

(1998), Attanasio, Banks, Meghir, and Weber (1999), Gourinchas and Parker (2002),

Fernández-Villaverde and Krueger (2007), Fernandez-Villaverde and Krueger (2011),

Pagel (2017) to name a few.

The cohort technique is an aggregation or grouping method which employs cohort

averages. It is well known that averaging in this manner fails to preserve important

heterogeneity features within groups and/or nonlinear effects and relations. In prac-

tice, the cohort assignment is restricted to a single time-invariant variable, and the

cohort level covariates are required to have sufficient variation. Furthermore, in the

instrumental variables analyses of the cohort context , see Moffitt (1993), one requires

interaction terms for cohort dummies and time dummies, for validity of instruments

for all covariates in the model. This provides further challenges to finding valid in-

struments. For more details regarding the limitations of cohort analysis, see Verbeek

(2008). Seawright (2009) considered cohort matching and estimation of missing re-

sponses based on more than one covariate.

We propose a statistical maching technique that infers “similarity” of cross section

units over different periods based on ideal aggregation of many observed characteris-

tics and covariates in many dimensions. This is consistent with the modelling context

in which observed hetergeneity is acknowledged in all other aspects of the model and

underlying theory. Our approach requires a familiar assumption on rank similarity

between the constructed “aggregate score” and the unobserved heterogeneity.

Extrapolation of similarity based on observables is fundamental to learning. “From
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causes which appear similar we expect similar effects. This is the sum of all our ex-

perimental conclusions.” This mode of thinking is common to methods of analogy,

reasoning by similarities, or case-based reasoning in psychology, artificial intelligence,

treatment effects and program evaluation 1.

In this paper, we propose ideal aggregates/indices of observed covariate for indi-

vidual units, and match them with similar indices in different time periods. Missing

waves of a would be panel data set are thus constructed. The missing waves are coun-

terfactual cross sections and distributions, not of outcomes, but of aggregated score

functions. We do not match cross section units by their outcomes. Our criteria for

matching measures closeness of the entire samples, of scores, emphasizing imputa-

tion of missing samples. The performance of the approach is examined both in sim-

ulation experiments and by application to fixed effect (FE) models for known panels

such as the PSID. In this paper we will focus on one-to-one matching, but multiple

matching/imputation is readily accommodated.

The paper unfolds as follows. We begin with a description of general FE models

in panel data and identify the missing counterfactuals. Section 3 describes the rule

for aggregation of observed covariates in several dimensions and its relation to un-

observed individual heterogeneity. Section 4 demonstrates the optimal information

aggregation of multivariate characteristics. Estimation of the parameters in the opti-

mal aggregator is also discussed in Section 4. Section 5 provides simulation evidence,

and Section 6 presents two empirical applications to private return to R&D in the

presence of spillovers and female labor force participation. Section 7 concludes.

2 Panel Data Models

Based on a panel of observations, or one constructed by matched individuals based on

some aggregation index Si , from different periods, we would have a (syntetic) panel,

{Yit,Xit}i=1,··· ,n;t=1,··· ,T . The synthetic panel would maintain the desired feature that the

ith individual possesses the same (or similar) unobserved heterogeneity. We illustrate

in three examples

Example 1 (Linear Fixed Effects Panel Data Model). Consider the linear fixed effects

model:

Yit = αi +XTitβ + εit.

1Schank (1986), Riesbeck and Schank (1989), Gilboa and Schmeidler (2003). Gilboa and Schmei-
dler (2003) provide an axiomatic analysis of the inductive inference and study the way that possible
predictions are ranked, as a function of past observations.

3



Pseudo Panels

The least square dummy variable estimator is then

β̂ =
[ n∑
i=1

T∑
t=1

(Xit −Xi)(Xit −Xi)T
]−1 n∑

i=1

T∑
t=1

(Xit −Xi)(Yit −Y i).

Example 2 (Additive Nonlinear Regression). Consider the nonlinear fixed effects model:

Yit = αi + gt(Xit,β) + εit.

The optimal estimator is the nonlinear within-group estimator:

β̂NWG = argmin
β

n∑
i=1

[
Yi − g(Xi ,β)

]T
·
(
IT − llT /T

)[
Yi − g(Xi ,β)

]
,

where Yi = (Yi1, · · · ,YiT )T , Xi = (Xi1, · · · ,XiT )T , g(·) = (g1(·), · · · , gT (·))T and l = (1, · · · ,1)T .

Example 3 (Discrete Choice Model). Consider the binary choice model:

Yit = 1
{
XTitβ +αi − εit > 0

}
,

where ε follows standard Logistic distribution. A consistent estimator for structural

parameter, β obtains from conditional MLE, see §23.4.3 of Cameron and Trivedi (2005)

and §7.3.1.2 of Hsiao (2014) for details. There are many bias reduction methods

for discrete panel data models, see Hahn and Newey (2004), Arellano and Carrasco

(2003), Arellano and Hahn (2007), Greene (2004), Bester and Hansen (2009), Dhaene

and Jochmans (2015), Fernández-Val (2009), Fernández-Val and Vella (2011), Fernández-

Val and Weidner (2016), Honoré and Lewbel (2002). There are methods to deal with

dynamic discrete choice panel data models, see Hahn and Kuersteiner (2011), Honoré

and Kyriazidou (2000), Carro (2007).

For random coefficient panel data model, the applicability of our synthetic panel

construction requires further investigation of the similarity of the random coefficients

and is deferred to future research.

3 Analysis of Unobserved Heterogeneity

Accounting for unobserved individual heterogeneity often leads to significant and

sunbstantively different practical inferences. Fixed effects approaches in panel data

models are attractive due to their flexible treatment of unobserved heterogeneity; see

Blundell and Stoker (2005, 2007), Blundell, MaCurdy, and Meghir (2007).

4



Lin and Maasoumi

We extrapolate the ranks of unobserved heterogeneity of individuals from the in-

formation embedded in their observed characteristics. For illustration, we consider

individuals 1 and 2 in a given period. Denote the unobserved heterogeneity and ob-

served characteristics of individual 1 and 2, respectively, as (α1,X1) and (α2,X2). We

make the following well known assumption on “rank similarity”:

Assumption 1. Observed characteristics ranks represent unobserved heterogeneity

ranks, i.e. α1 > α2 iff S(X1) > S(X2) for some appropriate aggregation function S(·)2.

Remark 1. Assumption 1 is similar to the axiomatic prediction rule in Gilboa and

Schmeidler (2003). In life-cycle consumption and labor supply models, MaCurdy

(1981) suggests taking unobservable marginal utility, λ, constant over the lifetime of

the consumer, and treat it as an unobserved heterogeneity in the panel data analysis.

MaCurdy (1981) also points out that “it is theoretically possible to compute a unique

value for λ using data on an individual’s consumption, labor supply and wage rate at

a point in time.” Thus the observed consumption, labor supply and wage rate provide

information for extrapolation/imputation of the unobserved marginal utility constant

in the life-cycle model.

Similarly, in the return to schooling studies (see Card (1999), Heckman, Lochner,

and Todd (2006) for surveys), ability is usually considered as an unobserved hetero-

geneity, while observed test scores may extrapolate the rank of ability. It is clear that

one does not have to employ all the observed characteristics in aggregation3. There are

applications in which the rank similarity condition in Assumption 1 is not compelling.

Assumption 1 itself does not suffice to make the fixed effects approaches applicable

to pseudo panels. An additional assumption is required, as follows

Assumption 2. The distribution of unobserved heterogeneity in different periods is

unchanged.

Consider a series of independent cross sections, {Yi1,Xi1}i=1,··· ,n and {Yi′2,Xi′2}i′=1,··· ,n
4.

Denote the unobserved heterogeneity in periods 1 and 2 as αi , i = 1, · · · ,n and αi′ , i′ =

1, · · · ,n. Assumption 2 states that Fα(·) and F′α(·) are equivalent where Fα(·) and F′α(·)
are the distribution functions of αi and αi′ respectively. Waves of cross sections usually

2We defer the discussion of “appropriate” information aggregation to Section 4. Single variate cohort
assignment IS an aggregation method!

3This would mitigates the large dimension problem discussed in Section 4. However, “Fundamen-
talism”, suggests that we take as many characteristics as possible for proper “representation”

4We set T = 2 for illustration. Our results generalize to larger T . Without loss of generality, we
assume the numbers of observations along time dimension are the same.

5



Pseudo Panels

contain representative samples of the population. For instance, the Current Popula-

tion Surveys (CPS) is a monthly representative sample of the United States labor force

and many other covariates. Representativeness validates the same-distribution condi-

tion in Assumption 2. Combination of Assumptions 1 and 2 makes inference based on

pseudo panel feasible. We summarize the above as a proposition:

Proposition 1. Given Assumptions 1 and 2, one to one matching for individuals in

different periods is valid. The matched pairs have similar unobserved heterogeneity.

Remark 2. Proposition 1 may be generalized to multiple-to-one matching, the so called

multiple imputation in some contexts. The empirical similarity literature indicates

how one may proceed, see Gilboa, Lieberman, and Schmeidler (2006, 2011), Gayer,

Lieberman, and Yaffe (2017).

Another similar situation is in propensity score matching in treatment effects stud-

ies, e.g. Rosenbaum and Rubin (1983), Heckman, Ichimura, and Todd (1998), Abadie

and Imbens (2006, 2016). The aggregation function S(·) is similar to the propensity

score function, but with a substative and substantial difference (see below). Further,

the components of S(·) need not be time-invariant in our approach. The common trend

condition is sufficient to preserve the rankings.

4 Information Aggregation of Observed Characteristics

In this section, we describe first an optimization approach to construction of ideal

aggregates/score functions of the desired characteristics. The optimal aggregation is

for each period and we suppress the subscript t when it is not confusing. In contrast

to estimation of propensity scores, either in parametric or nonparametric ways, we

do not have/employ an outcome (left hand side treatment) variable. A probit or logit

type estimation is not feasible. In our approach matching is based only on observed

characteristics.

Maasoumi (1986) proposed an optimal aggregator, denoted by S, to summarize

information from several observed characteristics, such as income, health, and edu-

cation. The optimal aggregation function minimizes the generalized relative entropy

between the aggregator Si and each of its component Xij . Since not all available char-

acteristics may be used in aggregation, we use Zi instead of the entire characteristics

Xi for the subset employed for matching, with dimension d.

The optimal aggregator/score function is defined as minimizer of the following
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generalized relative entropy criterion that is sometimes referred to as Cressie-Read:

S(Zi) = argmin
S

Dδ(S,Z;γ) =
d∑
j=1

γj

 n∑
i=1

Si

[(
Si/Zij

)δ
− 1

]
/δ(δ+ 1)

 s.t. n∑
i=1

Si = 1. (4.1)

We have the optimal aggregator as

Si ∝
 d∑
j=1

γjZ
−δ
ij

−1/δ

, δ , 0,−1;

Si ∝Πd
j=1Z

γj
ij , δ = 0;

Si ∝
d∑
j=1

γjZij , δ = −1.

(4.2)

By minimizing the “divergence measure” Dδ, we make the vector S ≡ (S1,S2, · · · ,Sn) as

close to their corresponding multivariate attributes as possible, see Maasoumi (1986)

for details. From Information Theory, the vector S absorbs all the objective statistical

information in the data, and any deviation from S will be accordingly suboptimal. We

emphasize, this makes entire distributions (samples) closest to each other.

4.1 Estimation of Parameters in the Optimal Aggregator

As with propensity scores, we require estimates for the unknown parameters in these

functions. There are subjective methods, of course, but we demonstrate two data based

methods to derive the weights for different attributes(γ ′js) and substitution degree

between attributes(δ). Hereafter, we focus on Equation (4.2) with δ , 0,−1.

4.1.1 Two-Step Estimation

When d = 2, we can adopt a two-step procedure proposed by Maasoumi and Racine

(2016) to estimate the parameters. The first step is the nonparametric estimation of

the conditional pdf, cdf and quantiles of the appropriate covariates. The second step

is a standard fitting regression. Explicitly, consider the (CES) aggregator function

S(Zi) = A

γZ−δi1 + (1−γ)Z−δi2

−1/δ

. (4.3)
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Taking partial derivatives with respect to Zi1 and Zi2 results in

S1 ≡
∂S(Zi)
∂Zi1

= Aγ

γZ−δi1 + (1−γ)Z−δi2

(−1/δ)−1

Z−δ−1
i1 ,

S2 ≡
∂S(Zi)
∂Zi2

= A(1−γ)

γZ−δi1 + (1−γ)Z−δi2

(−1/δ)−1

Z−δ−1
i2 .

Therefore

− S1

S2
=

γ

(1−γ)

Zi2Zi1

δ+1

, (4.4)

where we can obtain estimates of S1
S2

directly from the estimated conditional quan-

tiles, followed by a standard log linear regression for consistent estimation of γ and

δ. In this method, unrestricted nonparametric distributions of the desired matching

variables are obtained, projected onto “equi-probable”, quantiles, by means of esti-

mated derivatives. The points in such quantile “sets” are then fitted to the aggregate

functional as appropriate. This technique provides purely data deriven values for the

unknown parameters of the aggregator score function.

4.1.2 Calibration

Though the two-step estimation is straightforward, the dimension of attributes is large

in many economic application, e.g. return to schooling. When d ≥ 3, the first step

nonparametric estimation suffers from so-called curse of dimensionality. Thus we

adopt calibration like method to estimate the parameters. The technique is similar to

that in Maasoumi and Xu (2015). Maasoumi and Xu (2015) compare the distributions

of the optimal aggregator (for happiness) and the reported happiness from the data

and obtain those estimates which minimizes the distance of the two distributions, e.g.

the Hellinger distance.

In our pseudo-panel framework, we do not utilize observed outcomes correspond-

ing to the aggregator index. Fortunately, the representativeness of the pseudo panel

facilitates a calibration avenue. Denote the Si1 and Sj2 as the two aggregator functions
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for period 1 and 25:

Si1 = A1

 d∑
k=1

γjZ
−δ
ik

−1/δ

, i = 1, · · · ,n,

Sj2 = A2

 d∑
k=1

γjZ
−δ
jk

−1/δ

, j = 1, · · · ,n.

(4.5)

We choose γ ’s and δ to minimize the distance between the distributions of the two

aggregator indexes, i.e. making Si1 and Sj2’s distributions as close as possible. We

adopt the Matusita-Bhattacharya-Hellinger distance as our optimization criterion. For

details about the Hellinger distance, see Maasoumi and Racine (2002), Granger et al.

(2004). We normalize Si1 and Sj2 to be in [0,1], i.e.
∑n
i=1Si1 = 1 and

∑n
j=1Sj2 = 1. Let

f1 and f2 be the density functions of Si1 and Sj2 and the Hellinger distance is defined

as

Sρ =
1
2

∫ 1

0

(
f 1/2

1 (z)− f 1/2
2 (z)

2

dz. (4.6)

We search the whole parameter space to find the set of parameters, seeking the small-

est distance between entire samples. The calibration method is akin to method of

“Hedonic Weights” for information aggregation, see Decancq and Lugo (2013). We

choose the values of γj ’s and δ to minimize Sρ. Cross section units are not matched

individually.

This sample matching approach is clearly more suited when statistical inference

on models is the inferential objective. “Individual” matching may be better suited

when treatment effect at individual level is sought.

4.2 Matching Algorithm Compared to Propensity Scores

Methods

Consider the aggregator function S(z) and its CDF F(s), our matching algorithm in-

verts based on the empirical counterpart of F(s) to obtain the ranks of individuals

(units), F−1(ŝi) = p̂i given ŝi estimated aggregate for individual i. Units are then

naturally ranked by pi ∈ [0,1]. Units with the same rank pi in different periods are

matched.

In propensity score matching, an observed binary outcome y ∈ {0,1} is regressed on

some CDF transform of (typically linear) index of variable z, such as Probit or Logit

5There are usually more than two periods, the result can be generalized accordingly.
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(or semiparametrically or nonparametrically), obtaining F∗P S(z′i β̂) = P̂ ∗i . Matching is

then based on P̂ ∗i .

There are two major differences. In the propensity score method, observations on

a state y ∈ {0,1} is available, allowing a regression based predication of p̂∗i . We do not

have the state variable, and derivation of ŝi is different– it is an essentially imputation

method, as in our calibration or two-stage methods.

The second difference is that our p̂i ’s are “ordered” and
∑
i P̂i = 1.

Exploration of inverse probability weighting and conditioning based on PS is be-

yond the scope of this paper, but such methods are clearly available based on P̂i , espe-

cially doubly robust inference techniques, which are tolerant of misspecified models

that obtain these scores. See Wooldridge (2010). P ∗i ’s admits the same “interpretation”

as Pi ’s, as “assignment probabilities” to cohorts, for example.

4.3 Cohort Analysis Revisited

The cohort approach may be interpreted as a very limited special case of matching,

both in terms of its single variable “assignment rule”, and in terms of follow up infer-

ence procedures. Cohort designation is typically based on a time invariant variable,

e.g. year of birth. We construct “cohorts” based on the constructed index Si(·), which

is not restricted to time invariant attributes, or any one variable. Under the common

trend condition above, Si(·) provides the basis for cohort designation. Further (since

Si lies between 0 and 1), we can conduct cluster analysis to determine optimal co-

hort size and the number of cohorts, as in Hirschberg, Maasoumi, and Slottje (1991,

2001). This provides for multiple matches, if desired, and the number of cohorts is

essentially a tuning parameter. Asymptotic analyses in the cohort literature allows

the number of cohorts to increase to infinity, with the size of cohort going to infinity,

or both. One may adapt the tuning parameter based on the cross sectional and time

dimension considerations of the observed data.

Similar to single variable cohort methods, the aggregate scores Si are less hetero-

geneous, and less variable, generally speaking. The assumption that ᾱct = αc is more

plausible. This is important for all cohort analyses, especially when the time dimen-

sion is small, see Verbeek (2008) for a critical discussion of this assumption.

5 Monte Carlo

We investigate the performance of our methods based on the fixed effects estimator

with artificially generated panel data. We generate full panel data draws from several
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data generating processes (DGPs). The sampled data is then treated as repeated cross

sections, ignoring its longitudinal relations. We then apply our matching methods

and employ the constructed pseudo panels (calibrated) to estimate parameters. These

estimators are then compared with corresponding estimators from the genuine panel

data.

We consider the short panels with two periods and five periods. For the two pe-

riods case, we generate genuine data for two periods using DGP with known param-

eters. The S scores for the first and second period are then computed. The matched

pseudo panels are constructed based on the ranks of individuals from these S’s. The

individual with lowest S in the first period is matched with the individual with lowest

S in the second period, and so on. Implicit empirical probability transforms provide

the matches. The estimators are compared in terms of mean squared errors (MSE)fit

for short panels.

Our pseudo (imputed) panel estimator is compared with the FE estimator for the

above generated data using ratio of root mean squared errors (RRMSE≡ RMSEFE/RMSEIE),

computed around the true parameters (β1,β2,β3) = (−1,1,−1). In the first DGP, we

consider three independent X’s. In the second DGP, we consider three dependent X’s

which may have different optimal weights in the CES optimal aggregator functions

compared to the independent case. In terms of RMSE, the performance of the pseudo

panel FE estimator is remarkably similar to the traditional FE estimator. In the third

DGP, we consider five periods and there is persistence in observed characteristics.

The performance of our method is even better that the panel FE method in the non-

stationary case. One potential reason is that our matching removes the persistence of

individual’s X’s over the time.

DGP1:

Ui1 ∼N (0,1)[0,∞]; Ui2 ∼ Exp(1); Ui3 ∼U [0,1],

Vi1 ∼N (0,1)[0,∞]; Vi2 ∼ Exp(1); Vi3 ∼U [0,1],

X1,i1 =Ui1; X1,i2 = ρX1,i1 + σVi1,

X2,i1 =Ui2; X2,i2 = ρX2,i1 + σVi2,

X3,i1 =Ui3; X3,i2 = ρX3,i1 + σVi3,

αi = X1,i/3 +X2,i/3 +X3,i/3− (1 + ρ+ σ )/6 ·
(√ 2

π
+ 1 + 0.5

)
,

Yit = αi + β1X1,it + β2X2,it + β3X3,it +Uit, i = 1, · · · ,n; t = 1,2; Uit ∼N (0,1).
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Table 1: Comparison of IE and FE Estimations (DGP1, ρ = 0.7,σ = 0.3)

Root Mean Square Errors

n RMSE of IE RMSE of FE RRMSE

β1 β2 β3 β1 β2 β3 β1 β2 β3

200 0.411 0.311 0.602 0.415 0.238 0.831 1.010 0.768 1.380
400 0.327 0.241 0.456 0.286 0.180 0.621 0.874 0.747 1.362
800 0.199 0.164 0.301 0.195 0.141 0.399 0.978 0.856 1.325

DGP2:

U1i ∼N (0,1)[0,∞]; U2i ∼ Exp(1); U3i ∼U [0,1]

V1,it ∼N (0,1)[0,∞]; V2,it ∼ Exp(1); V3,it ∼U [0,1], t = 2,3,4,5

X1,i1 =U1i ; X1,it = ρX1,it−1 + σV1,it, t = 2,3,4,5;

X2,i1 =U2i ; X2,it = ρX2,it−1 + σV2,it, t = 2,3,4,5;

X3,i1 =U3i ; X3,it = ρX3,it−1 + σV3,it, t = 2,3,4,5;

αi = X1,i/3 +X2,i/3 +X3,i/3− (1 + ρ+ ρ2 + ρ3 + ρ4 + ρ3σ + 2ρ2σ + 3ρσ + 4σ )/6 ·
(√ 2

π
+ 1.5

)
Yit = αi + β1X1,it + β2X2,it + β3X3,it +Uit, i = 1, · · · ,n; t = 1,2; Uit ∼N (0,1).

Table 2: Comparison of Pseudo and FE Estimates (DGP2, ρ = 0.8,σ = 0.2)

Root Mean Square Errors

n RMSE of IE RMSE of FE RRMSE

β1 β2 β3 β1 β2 β3 β1 β2 β3

200 0.205 0.181 0.324 0.214 0.114 0.426 1.046 0.632 1.316
400 0.150 0.127 0.235 0.154 0.076 0.319 1.027 0.595 1.358
800 0.113 0.096 0.212 0.093 0.062 0.214 0.824 0.645 1.006

6 Empirical Illustration
We illustrate our method in two genuine panel data applications. First is the pri-

vate return to R&D in the presence of spillovers in Eberhardt, Helmers, and Strauss

(2013), using an unbalanced panel of up to 12 manufacturing subsectors in 10 OECD

countries, over a maximum of a 26-year period. The second is on female labor force
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participation from Fernández-Val (2009) using a balanced panel of 1461 females from

the PSID dataset. We treat the data in both cases ignoring their panel structure, as

if they are repeated cross sections. We apply our “calibration” matching approach to

obtain balanced “pseudo” panels, and use the same estimation methods employed in

the original Eberhardt, Helmers, and Strauss (2013) and Fernández-Val (2009) studies.

We compare estimation results and find generally qualitatively similar inferences.

6.1 Private Return to R&D in the Presence of Spillovers

Examination of private returns to R&D in the presence of spillovers was conducted

based on real panels by Eberhardt, Helmers, and Strauss (2013) and Millo (2019).

Matching was done on the basis of three variables, logrithm labor (lnLit), logrithm

capital (lnKit) and logrithm R&D (lnRit) over the 26 years. Our elongated pseudo

panel is a balanced panel of 118 units over 26 periods (using the calibration technique

for estimating aggregators). We explore the four different specifications adopted in

Eberhardt, Helmers, and Strauss (2013) for estimation: static and dynamic homoge-

nous models, and static and dynamic heterogenous models. The original estimates are

reported in the left panel and our estimates in the right panel of the tables below.

The estimates of private returns to R&D in the original paper and our proposed

method are qualitatively similar in homogenous models. In heterogenous models,

private returns to R&D are all positive based on our matching method, whereas some

effects are negative in the original paper.

Based on our pseudo panels, accounting for cross sectional dependence does not

make a large difference in estimates for private returns to labor, capital and R&D. This

may be due to matching removing the spillovers of knowledge, which leads to more

independent “pseudo” panels waves. This may be different if our methods are used to

impute “missing observations” or missing responses in otherwise real panels.
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Homogenous Models (Static)

Eberhardt, Helmers, and Strauss (2013) Pseudo Panel Matching

POLS 2FE FD CCEP CCEPt POLS 2FE FD CCEP CCEPt

lnLit 0.464 0.608 0.635 0.562 0.582 0.464 0.562 0.468 0.525 0.525
40.946 18.944 18.085 20.714 21.002 44.169 14.112 5.509 5.762 5.737

lnKit 0.465 0.487 0.279 0.289 0.203 0.476 0.484 0.449 0.468 0.468
37.802 10.908 3.431 7.946 4.972 40.983 40.279 28.095 38.780 38.616

lnRit 0.096 0.063 0.045 0.084 0.064 0.082 0.078 0.085 0.078 0.078
22.923 4.544 1.698 4.925 3.662 19.932 18.138 14.664 19.961 19.876

Homogenous Models (Dynamic)

Eberhardt, Helmers, and Strauss (2013) Pseudo Panel Matching

POLS 2FE BB CCEP CCEPt POLS 2FE BB CCEP CCEPt

lnLit 0.338 0.654 -0.792 0.369 0.364 0.440 0.535 0.444 0.321 0.321
2.495 19.761 -0.927 5.256 4.996 22.885 9.482 3.670 2.034 2.025

lnKit 0.173 0.078 1.409 0.367 0.287 0.492 0.461 0.489 0.496 0.496
0.869 1.447 2.041 3.746 2.644 22.879 40.914 5.357 22.419 22.324

lnRit 0.462 0.019 0.222 0.066 0.064 0.091 0.083 0.054 0.081 0.081
2.788 0.815 1.594 1.668 1.600 12.427 22.388 1.494 11.432 11.383

Table 3: Static and Dynamic homogeneous models (Table 5 and 6 in EHS). POLS:
pooled OLS with time FEs; 2FE: two-way fixed effects (in the dynamic models, impos-
ing COMFAC restriction); FD: first differences with time FEs; CCEP: pooled common
correlated effects (without and with year dummies); BB: dynamic micropanel estima-
tor by Blundell and Bond (1998).
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Heterogenous Models (Static)

Eberhardt, Helmers, and Strauss (2013) Pseudo Panel Matching

MG CDMG CMG CMGt MG CDMG CMG CMGt

lnLit 0.568 0.557 0.599 0.698 0.811 0.701 0.715 0.694
6.569 7.628 9.000 8.236 9.471 7.230 4.787 4.013

lnKit 0.117 0.445 0.244 0.149 0.431 0.434 0.418 0.410
0.955 5.008 1.702 1.004 13.448 10.113 12.524 11.249

lnRit -0.058 0.089 0.035 -0.050 0.070 0.066 0.075 0.075
-0.728 2.123 0.445 -0.601 7.458 4.958 7.034 6.938

Heterogeous Models (Dynamic)

Eberhardt, Helmers, and Strauss (2013) Pseudo Panel Matching

MG CDMG CMG CMGt MG CDMG CMG CMGt

lnLit 0.703 0.567 0.642 0.678 0.865 0.741 0.856 0.987
6.152 10.011 9.386 9.432 8.314 7.332 3.720 4.240

lnKit 0.277 0.245 0.276 0.172 0.408 0.403 0.401 0.417
1.867 3.373 1.709 1.088 14.484 14.537 10.524 9.221

lnRit -0.107 0.139 -0.084 -0.088 0.080 0.088 0.072 0.061
-0.953 3.947 -0.945 -0.964 8.126 9.847 4.985 4.145

Table 4: Heterogeneous models (Table 7 and 8in EHS). MG: Mean group estimator
by Pesaran and Smith (1995); CDMG: cross-section demeaned mean group; CMG:
Pesaran (2006) CCE mean group version (without and with year dummies).
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6.2 Female Labor Force Participation

We illustrate the empirical performance of our methods in the study of female la-

bor force participation as in Fernández-Val (2009). The original panel is from PSID

Waves 13-22, with 1461 females over 10 years. Fernández-Val proposes a bias cor-

rection method to handle the incidental parameters problem in the nonlinear panel

data model. Fernández -Val examined the relationship between fertility and female la-

bor force participation. He employed a nonlinear panel data model with unobserved

heterogeneity to deal with multiple unobserved factors as determinants of joint fer-

tility and female labor force participation decisions. We take the micropanel as if it

is repeated cross sections and use our information based matching method to gener-

ate a “pseudo” panel based on the calibration estimation of the aggreagator function.

Matching variables are logrithm of husband’s income and age. Applying the same

estimation strategies used in Fernández-Val (2009), we obtain similar results on the

impact of fertility on female labor force participation. We report the result for the

Logit and Probit methods in following tables. The results of linear probability model

are similar. Our results are also consistent with finding of Fernández-Val (2009) that

uncorrected estimates of index coefficients are larger (in absolute value) than their

bias-corrected counterparts. The signs and significance of all estimates in both the

static and the dynamic models are the same as those found in Fernández-Val (2009).

7 Conclusion

In this paper, we examine the performance of a pseudo panel construction based on

an optimization of whole sample imputation technique. A rank preservation condi-

tion on unobserved heterogeneity helps to transform time series of cross sections to

pseudo panels which retain the attractive time invariant heterogeneity feature in a

genuine panel. The pseudo panels so constructed allow traditional fixed effects infer-

ences. We do not use averages of cohorts for imputation of missing or unobserved ob-

jects. Our approach has many other applications in similar situations, including pure

cross section-treatment effect applications, as in Maasoumi and Eren (2006), or time

series applications as in Ginindza and Maasoumi (2013) who analysed Difference-in-

Difference effects of inflation targetting for a sample of countries. The performance of

our proposed approach appears to be quite satisfactory. We conjecture that this is due

to optimum information processing by our aggregation method, and the emphasis on

matching entire samples.
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Fernández-Val (2009) Pseudo Panel Matching

Estimator FE JK BC3 BC3p FE JK BC3 BC3p

A- Index Coefficients

Kids 0-2 -0.714 -0.618 -0.631 -0.666 -0.525 -0.447 -0.467 -0.460
(0.056) (0.055) (0.055) (0.060) (0.031) (0.031) (0.031) (0.032)

Kids 3-5 -0.411 -0.363 -0.364 -0.382 -0.309 -0.261 -0.275 -0.274
(0.051) (0.051) (0.051) (0.055) (0.028) (0.028) (0.028) (0.027)

Kids 6-17 -0.130 -0.102 -0.115 -0.128 -0.085 -0.072 -0.075 -0.073
(0.041) (0.041) (0.041) (0.046) (0.014) (0.014) (0.014) (0.014)

Log(Husband income) -0.242 -0.210 -0.214 -0.210 -0.179 -0.154 -0.160 -0.160
(0.054) (0.053) (0.053) (0.056) (0.020) (0.020) (0.020) (0.022)

B- Marginal Effects (%)

Kids 0-2 -9.279 -9.474 -9.135 -9.636 -14.941 -14.869 -14.748 -14.529
(0.697) (0.704) (0.702) ( 0.764) (0.869) (0.880) (0.877) (0.892)

Kids(3-5 -5.344 -5.518 -5.264 -5.529 -8.788 -8.718 -8.682 -8.658
(0.656) (0.661) (0.660) (0.708) ( 0.788) (0.797) (0.794) (0.783)

Kids 6-17 -1.687 -1.602 -1.665 -1.851 -2.413 -2.389 -2.385 -2.304
(0.532) (0.537) (0.536) (0.598) (0.399) (0.402) (0.402) (0.401)

Log(Husband income) -3.140 -3.195 -3.098 -3.036 -5.099 -5.113 -5.048 -5.049
(0.695) (0.699) (0.698) (0.735) (0.575) (0.578 (0.577) (0.635)

Table 5: Static model [Table 10 (Probit Part)] in Fernández-Val (2009). FE denotes
uncorrected fixed effects estimator; JK denotes Hahn and Newey (2004) Jackknife bias-
corrected estimator; BC3 denotes the bias-corrected estimator proposed in Fernández-
Val (2009); BC3p denotes the bias-corrected estimator proposed in this paper when the
regressors are treated as predetermined.
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